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Abstract. A discussion of the number of labelling operators specifying an abstract basis for 
an irreducible representation is given which indicates that in the U(N) 3 O(N) state labelling 
problem, for two-rowed irreducible representations b, q, 0, .  . . , 01 of U(N), a single additional 
commuting labelling operator A is required. An analysis of the tensor representations leads 
to a suitable labelling scheme involving an additional whole number label 1. A U(N) 3 O(N) 
branching theorem, for two-rowed representations, is formulated, and the branching multi- 
plicities written down. 

Combinatorial techniques developed by Green and Bracken in 1973 for the case of 
U(3) 3 S0(3), adapted to the case of U(N) 3 O(N), lead to a polynomial identityof the form 

B ( A ,  @, . . .) = 0. 

which implicitly defines the labelling operator A (with eigenvalue 2) in terms of certain 
O(N) invariants @ (which are functions of the U(N) generators) and other known labelling 
operators and invariants. The calculations also give a cubic polynomial identity, satisfied 
by the N x N matrix of U(N) generators in two-rowed representations. 

Some physical applications of the U(N) 3 O(N) state labelling problem are briefly 
mentioned . 

1. Introduction 

Many problems in different fields of physics can be viewed in a more abstract way as 
particular cases of certain general problems in group representation theory. Of this 
kind is the state labelling problem, in which it is required to find commuting labelling 
operators whose common eigenstates specify a basis for an irreducible representation 
of a group G, in such a way as to exhibit its irreducible contents as a representation of 
some subgroup, GO. Such state labelling schemes must take account of the circumstance 
that a particular irreducible representation of Go may occur multiply within a given 
irreducible representation of G ; the labels to be defined must distinguish between such 
equivalent representations, and remove the degeneracy. This is the case for the state 
labelling problem considered here, that of U(N), the group of N x N unitary matrices, 
and its subgroup O(N), the group of N x N orthogonal matrices. 

The number of commuting operators required to provide a complete set of labels 
for abstract basis vectors in a representation of G is g n + m ) ,  where n is the dimension 
(number of real parameters) of G,  and m its rank (Racah 1962). Hence, if no, mo are the 
quantities appropriate to the subgroup Go, and an abstract basis is required in which the 
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labels of Go are diagonal, then, taking account of the m labels characterizing the irreducible 
representation of G,  a deficit off labels, where 

#n+m) = m+f+#no+mo), ( 1 )  
must be made good by the introduction of additional commuting labelling operators. 

Irreducible representations of U(N) and of O(N) may be labelled U(N)[p, , . . . , p N ]  
and O(N)(I, , . . . , IiN,Zl), respectively, where N = 2[N/2], 2[N/2] + 1, according to 
whether N is even or odd, and where the p are all non-negative integers, and the 1 are 
either all integers or all half-integers, satisfying 

p1 2 p 2  2 . . .  2 PN 3 0, 

1, 2 I ,  2 . * .  3 I [ N , , ]  2 0. 

(2) 

(3) 
The Gel’fand vectors (Gel’fand et a1 1963) provide abstract bases for these representa- 
tions, with the requisite numbers of labels, associated with irreducible representations 
of the subgroups in the chains : 

U(N) 3 U(N- 1) 3 . , . 3 U(2) 3 U(1), 

O(N) I> O(N- 1) 3 . . . 1 O(3) 3 SO(2). (4) 
The labels p and 1 are eigenvalues of corresponding hermitian labelling operators 
P and L, respectively. 

The solution of the U(N) 3 O(N) state labelling problem requires on the other hand 
a non-canonical abstract basis involving additional labels A , ,  . . . , ,$ and commuting 
labelling operators A , , .  . . , A,, as well as the labels associated with the subgroup chain 

U(N) 3 O(N) 3 O(N-  1 )  3 . . . 3 O(3) I> S0(2), ( 5 )  

in which the first link is degenerate. According to equation (l), the number f of such 
additional labels required is, for the general case of U(N) and O(N), 

f = % N 2  - N - 2[N/2]). (6 )  
Of primary interest in the following will be a class of irreducible representations 

called here ‘two rowed’, that is, of the form [ p ,  q, 0,. . . ,O]  = [ p ,  41. The subduced 
irreducible representations of O(N) are also two rowed, of the form (1, m, 0,. . . , 0) = ( I ,  m). 
I t  follows from the form of the abstract basis vectors (Gel’fand et a1 1963) that for this 
case, there are respectively 2N - 1 and 2N - 4 labels which do not vanish identically. 
The number f of additional labels required is therefore given by (compare equations 
( 1 )  and (5 ) )  

Thus, for two-rowed representations, the U(N) 3 O(N) state labelling problem requires 
just one additional commuting labelling operator A, with eigenvalue 3.. The abstract 
basis vectors may be written 

(2N-1) = 2+f+(2N-4). (7) 

where (,!,) stands for the set of labels associated with the chain 

O(N) 3 O(N- 1)  3 . . . 3 O(3) 3 S0(2), 

in two-rowed representations. 
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The same situation thus obtains for the case in hand as for the U(3) 3 SO(3) problem, 
where again there is just one missing label (Racah 1962). A theorem proved by Racah 
in the context of U(3) 3 SO(3) gives important information about the operator A, 
if it be assumed valid for arbitrary N .  The result is that, in an orthogonal labelling 
scheme, the diagonal matrix elements of certain independent SO(3) invariants, must 
be non-polynomial functions of A. This is contradicted by the evaluation in 0 4 of what 
is essentially the cubic invariant (compare Green and Bracken 1973). Hence, in the 
scheme here proposed, the operator A is non-hermitian, and the basis is non-orthogonal. 
The selection rule investigated by Racah (1962), 

A). = 0, It: 1 ,  (9) 
as the simplest non-orthogonal case, is in fact satisfied in the scheme proposed ($ 4). 

It should be mentioned that a solution of the U(N) 3 O(N) state labelling problem, 
with appropriate modifications, also provides solutions of corresponding U(N) 1 SO(N) 
and SU(N) 3 SO(N) problems (the form taken in some applications). Thus, since the 
diagram 

commutes, in the sense of subduced representations, the U(N) 3 O(N) state labelling 
scheme, here proposed for two-rowed representations, can be considered as a 
U(N) 2 SO(N) state labelling scheme for the special class of N-rowed irreducible 
representations of the form [ p ,  q, s , .  . . ,SI, since 

U(N)[p,q,s,. . . ,s] 1 SO(N) = U(N)jj,-s,q-s,O,. . . ,O] 1 SO(N). (11) 
In particular, the complete U(3) 2 SO(3) state labelling problem can be treated. 

It is the intention in the following to show how, from an analysis of irreducible 
tensor representations, an abstract operational definition (albeit implicit) can be given 
of a suitable labelling operator A, in terms of known labelling operators and invariants 
constructed from the generators. The tensor representations are treated in § 2, and a 
simple U(N) 3 O(N)  branching law for two-rowed representations is found, together 
with the corresponding branching multiplicities. Certain O(N) invariants, constructed 
from the U(N) generators, are considered in $ 3 .  These are evaluated in $ 4  using 
combinatorial techniques developed by Green and Bracken (1973). A byproduct of 
this is a cubic polynomial identity, satisfied by the N x N matrix of generators of U(N) 
in two-rowed representations. Finally, it is shown how these evaluations are used in 
providing an implicit operational definition of A. Firstly, however, some physical 
applications of the U(N) 3 O(N)  state labelling problem are briefly mentioned. 

The significance for physics of the U(3) 3 SO(3) problem has engendered several 
studies (Green and Bracken (1973) provide references to earlier work). In particular 
Hughes (1973) and Judd et a1 (1974) propose orthogonal solutions, with eigenvalues 
of the additional label computed numerically, in contradistinction to the present scheme. 
The problem has arisen in various applications, in particle physics (Green and Bracken 
1973), nuclear physics, and solid state physics. 

The generalization considered here to arbitrary N includes the important case 
( N  = 4) of U(3, 1) 3 O(3, 1 )  (for the analysis of the finite-dimensional tensor representa- 
tions, it is necessary only that the metric tensor be nonsingular ; no particular signature 
need be specified). This can be applied in relativistic quantum mechanics (compare 
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Green and Bracken (1973) for the nonrelativistic case). It may also arise in relativistic 
elementary particle models, involving a nontrivial embedding of the Lorentz or Poincare 
group in a larger unitary group (whether or not a strict symmetry). 

Certain state labelling problems in the classical groups are interrelated, so that a 
solution of one may provide indirectly solutions of related ones. The relationships 
between various embeddings and irreducible representations have been discussed for 
example by Quesne (1973). 

2. The U(N) 3 O(N) reduction via tensor representations 

The space 7" of rank f tensors carries representations 71 + U,, y + U , ,  in general 
reducible, of S,,  the symmetric group on f symbols, and of GL(N, C), the group of 
N x N nonsingular matrices, or of any of its subgroups. 

It is well known (Hamermesh 1962) that the irreducible U(N) invariant subspaces 
of Tf are those of the form Y Tf, where Y is a Young symmetry operator (symmetrizing 
over rows, and antisymmetrizing over columns) corresponding to some Young tableau. 

Further reduction is possible for matrix subgroups leaving invariant a certain 
quadratic form g, 

YxixIYxix2gxixi = (12) 

(If g is symmetric, the group is O(N), or a pseudo-orthogonal group ; if g is antisymmetric, 
the group is Sp(N).) The corresponding irreducible invariant subspaces are those of 
the form Y Tf, where Tf is the space of completely traceless rank f tensors (Hamermesh 
1962). 

In particular, the irreducible representation U(N) [ p .  q] is realized on the space 
T [ p ,  q]  of tensors of symmetry type {p, q}.  Tensor components are contravariant, and 
are written 

7 - 
, r = p - q .  

, S l S 2 . .  . sq U 1  . . . U, 1 t ,  . . .  t ,  

and are completely antisymmetric within each column, completely symmetric with 
respect to interchanges of columns of equal length, and possess in addition the sym- 
metries 

in each pair of columns. 
Similarly, the irreducible representation O(N)(I, m) is realized on the space T(I, m) 

of completely traceless tensors of symmetry type { I ,  m} .  
The reduction of an irreducible representation of U(N) with respect to O(N)  can be 

considered in two stages : firstly, the decomposition into traceless parts, and secondly, 
the application of Young operators to each of these traceless parts. The first stage is 
dealt with in the following. 
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Theorem 1. Every tensor t E Tf can be uniquely decomposed into two summands, 

t = !+U, (15) 
where T is completely traceless, and U has the form 

(16) u x ' . . . x f  - 1x2 X 3  ... Xf - g' U ( 1 2 )  + . . . , 
with 4 f c . f -  1 )  summands. t and U are orthogonal, since 

= 0. fX  I . .  . X f U  
X I  ... Xf 

Proof Weyl (1939, p 150). 
It follows from equation (15) that each summand of U can be expressed as a linear 

combination of traces of t. By repeating the procedure a decomposition of r into a sum 
of products of g with completely traceless tensors is obtained : 

where the ( are scalars, the f ,  are traceless parts of traces tr of t ,  the gr are products of 
g's, and the summation extends over all permutations n and traces 7. 

The application of Young operators to each of the f, produces a sum of irreducible 
tensors. The various distinct tensors obtained after grouping terms are the unique 
irreducible O(N) constituents. Equivalent O(N) constituents which may occur will be 
distinguished by their arising from different traces of the original tensor. 

For the special case of completely symmetric tensors, the above considerations lead 
to the familiar result that a completely symmetric rank f tensor yields angular momenta 
f, f - 2, f - 4 , .  . . . For tensors of two-rowed symmetry type, the reduction according to 
the above scheme can be carried out explicitly in simple cases. For example, for type 
{3,2}, 

1 1 1 
' ( ' O )  = 2(N-l)(N+2) ( (21) = ____ 3(N + 1 ) '  ((30) = - 9  

where the bar indicates symmetrized, completely traceless tensors, where [ii] 
and Y 

[ij]gij, 
Y { 3,2}, yielding for example 

Y[gYPqrll = g"[pqrI - gP'[sqr1 - g"Wrl+ gPP[str1. 

Equations (18) show that the irreducible O(N) constituents are given by 

U(N)[3,21 1 O(N) = (3,2) 0 (3 ,O)  0 (2,1) 0 (1,O).  
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The above example shows that the irreducible O(N) constituents are in one-to-one 
correspondence with certain standard traces ofthe U(N) tensor. The form of the standard 
trace in the general case is given by the following. 

Theorem 2. An arbitrary trace of a tensor of symmetry type { p ,  q }  can be expressed in 
terms of traces in standard form, labelled by whole numbers (K, i, p),  with graphical 
representation as in figure 1, where 

0 < 2;. < p ,  i > p ;  

0 < K < min(q - 2p, p - 23.) - max(q - 2i,  0) ; 

( q l ,  q 2 ,  q 3 ,  r l ,  r 2 )  = (2p, m, ( q  - 2 ~ )  - m, m -(q - 24, ( p -  2 4  - m) ; 

m = ~+max(q-22,0).  

0 < 2p < q, 
(19) 

(20) 

- ‘2 
Figure 1. Standard trace for symmetry type { p ,  q }  

Shaded portions of the figure represent contractions (of adjacent indices), and unshaded 
portions represent free indices. ( A + p )  is the total number of pairs contracted, p the 
number of 2 x 2 blocks contracted, and K describes the location of the remaining (i. - p )  
contractions. 

Proof. By induction, using equations (14). The requirement q2 2 0 for fixed E. and p 
determines the range of K. 

Each standard trace (K, R, p )  can be further decomposed into a sum of symmetrized 
standard traces by the application of all possible Young operators Y { s ,  , s2} .  However 
equations (14) imply that Y annihilates (K, A, p )  for s2 e q 2 ,  and for s2 > q2 produces 
a symmetrized (K’, A’, p’)  with different values of the labels. Hence the distinct symmetrized 
standard traces are just the symmetrized (K, E., p). 

Now to each symmetrized standard trace (K, A, p)  there corresponds by theorem 1 
a completely traceless tensor of the same symmetry type (9 ,  + q 3  + r2,  q 2 } ,  which there- 
fore belongs to an irreducible representation of O(N). The irreducible O(N) constituents 
of U ( N ) [ p ,  q] may therefore be labelled by ( K ,  A, p), or by (E,; I ,  m), by rearranging 
equations (20), where 

1 = q 2 + q 3 + r 2  = (p+q)-2(EL+p)-~-max(q-2i,0),  

m = q2 = ~+max(q -2&0) ;  

4 1 + q 2 + q 3  = 41 

(21) 

r l + r 2  = r = p - q ;  

( q l , q 2 , q 3 , r 1 , r 2 )  = ( ( ~ + q ) - ( l + m ) - 2 i , m , I - ( p - 2 / 1 ) , m - ( q - 2 ~ ) , ( ~ - 2 j , ) - m ) .  (22) 
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By rearranging equations (19). the following U(N) I) O(N) branching theorem for 
two-rowed representations is deduced. 

Theorem 3. 

N 2 4 :  [ p , q ] J O ( N ) = C @ ( R ; I m )  
D N 

D ,  : 0 6 21 < p :  

max(q - 21,O) < ( I  + m) - ( p  - 21) < 4. 

max(q - 2L, 0) < m < min((/ + m) - ( p  - 2A), p - 2 4  ; 

( p  + q )  - (I + m) even; m 6 I ;  

(24) 

D ,  = D3(m = 0); 

D ,  = D2(m = 0); 

DT = D3(m = 1); 

DT = D,(m = 2 ) ;  D;* = D2(l = m = 1). 

Here (I)* is the representation associate to ( I )  (differing by the alternating character). 
The modification rules of Murnaghan (1949, p 282) have been used for N = 2 and N = 3. 

The U(N) 3 SO(N)  branching theorem for two-rowed representations is similar to 
the above, except that the associated representations become identical, and (Boerner 
1963) 

0(4)(I, m) .1 SO(4) = ( I ,  m) 0 ( I ,  - m) 

0(2)(1) ! = (1) 0 ( - I)  ( I  # 0). (25) 

(nr # 01, 

That the label ,? actually distinguishes equivalent O(N) representations is clear from 
the fact that for fixed /I and ( I ,  m), (I+m, m) lies in D i  at most once. The multiplicity of 
O(N)(l, m) within U(N)[p, 41 is obtained from the range of 1 (equations (24)): 

max(p - I, q - m) < 21 6 min(p - m, ( p  + q)  - ( I  + m)). (26) 

The remaining sections aim to construct an abstract operational definition of a 
labelling operator A with eigenvalues corresponding to the label i ,  introduced here in 
the context of tensor representations. 

3. U(N) and O(N) invariants 

The single additional labelling operator '2 which is to be introduced in order to complete 
the state labelling scheme must be an O(N) invariant, and will therefore be defined in 
terms of a complete set of O(N)  invariants. These are now considered. 

The generators of U ( N )  are operators aij having the commutation relations (Green 
1971) 

(27) [ai j ,  a k l ]  = S i l d ,  - 6kja', , 1 < i , j , k , l  6 N. 
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The operators cxij, defined by 
- 

3 . .  = a. . -a . .  
11 11 El' 

a..  ij = a.. JI = ak.g.  I jk? (28) 

are the generators of the subgroup O(N)  in the representation, and have the commutation 
relations (Green 1971) 

r k l l  = gkjXil-gilrkj-gkiZjl+gjl~~i. ('9) 

The aij, d,  can be considered as N x N matrices, and matrix products and traces can 
be defined as for c numbers (Bracken and Green 1971): 

(a")', = (a"- l ) i kakJ .  

( a )  = a*,. (30) 

It follows from the commutation relations that, in addition to the invariants (2") 
constructed from the generators of O(N)  (Bracken and Green 1971), traces of the general 
form ( a n 1 Z n 2 . .  .), constructed from the generators of U(N), are O(N)  invariants (in 
particular, the U(N) invariants (a" )  are of this form). 

For two-rowed representations, it suffices to consider the eight cubic, and sixteen 
quartic, O(N) invariants of this form. These are of course not all independent. The 
commutation relations themselves imply certain inter-relationships ; for example it 
can be proved generally that 

(anlcn2) = (c"*a"'). (31) 
In addition, the invariants (a " )  and ( r " )  can be expressed in terms of the labels [ p ,  q ]  
and ( I ,  m) respectively. The expansion of (3") = ( (a -a ) " )  then imposes further 
restrictions. 

Finally. the cubic polynomial identity, equations (42). satisfied by the matrix of 
U(N) generators in two-rowed representations, can be used to evaluate directly any of 
the O ( N )  invariants involving products of a 3  or a3.  

The result of the above considerations is that, for two-rowed irreducible representa- 
tions of U(N), there is just one independent additional cubic, and one quartic, O(N)  
invariant. These can be taken to be &aZa + Cas) and i (ai ia5 + SiaSia), respectively. 
It  is in terms of these invariants that the additional labelling operator A is to be defined. 

4. Evaluation of invariants 

The tensor reduction 

carried out in § 2 showed each irreducible constituent corresponding to a standard trace 
(1; 1. m) to be a linear combination of tensors of the form 

r : m i t ( A : l m )  = ' ( g ~ l ; l m ) ' ( l m ) t ( l ; l m ) ) ,  (33) 

where Tom) is an operator effecting the projection on to the traceless tensor corresponding 
to t ( l : ,m,  [equation (15)). g(n; lm)  is an appropriate product of g's. and the Young operator 
Y { p .  q )  appears because of the uniqueness of the decomposition of equation (15). 
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Shift operators A *  which change the value of A are defined on T(A; I ,  m) by their 
action on tensors of this form : 

A*(r&)t(A;lmJ = r ; m ) t ( i *  1 : l m )  

A * ( r l ) l m ) t ( l ; l m ) )  = 0 (otherwise). (34) 

(0 < 2(A* 1.) < p ) ,  

If Q, is an arbitrary O(N) invariant in the representation carried by T[p,q], then a 
modified invariant @' is defined on T [ p ,  41 = Z D N  @ T(2;  1, m) by 

Q,'t = r ; m ) ( @ t ) ( , t ; l m ) -  (35) 

This follows from the structure of equation (33) and the properties of g and Y under 
orthogonal transformations. 

The @', rather than the @, are more readily evaluated in the present framework. 
The invariance of 0' means that @'T(A; Im) is an invariant subspace. Moreover @' 
can only mix the label 1, leaving the other O(N) labels invariant. Hence 

@' : T(i; 1, m) -, 0 T(A'; I ,  m). 
D N  

In the calculations discussed below, the traces (@t)( l ; ,ml  are evaluated. In general 
it is found that 

where the scalars 5, (* are polynomials in N ,  p ,  q, A, 1 and m, and where n, n* E Si+, 
act on indices which are symmetrized by the application of I-(lm). Hence, using equations 
(33h (34) and (3% 

@'= (+( 'A'+(-A- .  (37Q 

If on the other hand the cases 

occur, where c is a trace disjoint from ( A ;  Im), and U ,  antisymmetrizes over indices 
symmetrized by then mot vanishes (in the second case because the traceless part 
of any product of g's is zero). 

Of course, if @ is an invariant of U(N), or is a function only of the O(N)  generators, 
then only the first term of equation (37a) appears. Thus, for the invariants (a ) ,  ( a 2 ) ,  
( a 3 ) ,  ( a 3 >  and (ai i ) ,  a direct evaluation gives 

(a> = (9 = p+q,  

( a 2 )  = ( i i 2 )  = p(P+N-l)+q(q+N-3), 

( a 3 )  = (2N-3)(a2) +$[3(a2) - - ( 3 N - 5 ) ( ~ )  - 2 ( N -  l ) (N-2) ] (~) ,  

( a 3 )  = ( N  - 3)(a2) + f [ 3 ( a 2 )  - (a)Z-(3N- 7)(a) - 2 ( N -  1)(N- 2)](a), 

(aZ)  = p ( p +  N - 1) + q(q + N - 3)- 1(1+ N -  2) - m(m + N -4), (39) 

(aii) = (a2)-$(cr2). (40) 

the last equation being in accord with the identity (Bracken and Green 1971) 
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In fact it proves possible to evaluate a3  and si3 directly. Bracken and Green (1971) 
have given a polynomial identity of degree N satisfied by the N x N matrix of U(N) 
generators in the irreducible representation [ p l , .  . . , p A V ] .  For [ p ,  q, 0 , .  . . ,O]  this reduces 
to 

(a-O)(a-0- 1)(.  . . ) ( a - O - N + 3 ) ( a - q - N + 2 ) ( a - p - N +  1 )  = 0, 

(ii-O+N-l)(Z-O+N-2)(. , .)(5-0+2)(Z-q+l)(a-p+O) = 0, (41) 

while the result of the direct evaluation is a cubic polynomial identity of degree N .  
For [ p .  q,  0 , .  . . .O], and [ p ,  p .  0,. . . , O ] ,  respectively, 

a(a-q-N+2)(a-p-N+l)  = 0, 

(Li+2)(Si-q+l)(Z-p) = 0, 

a 3  = ( ( a )  + 2 N  - 3)a2+P[(a2) - (a)Z-(3N- 5 ) ( a )  - 2(N - l)(N- 2)]a, 

zi3 = ( ( a )  - 3)2+3[(a2) - (a)2 - ( N  - 7 ) ( a )  -4]si+((a2) - ( a y  - (N  - 3)(a)); 

a(a-p-N+2) = 0, 

(a + 2)(Z - p )  = 0. (42) 

The calculations are all carried out using equations (35), (37) and (38), using the 
standard trace (i; I ,  m) of figure 1 and the symmetry properties, equation (14). The 
action of the generators of U(N) in tensor representations is given by (Green 1971): 

J (43) (a’ ,l)x~...xt = ~ x l ~ ~ i x z . . . x t  + . . , + 6Xtjtxl...Xr- l i ,  

Such tensor substitutions, and more complicated combinations, can be represented 
(Green and Bracken 1973): 

where the index label x runs over all indices xl,. . . , x f  of the index set, and where the 
bracket (I) indicates that for each of these values, the label i is to be substituted in the 
appropriate location. 

As an example of these calculations, the O ( N )  invariant (aa)  is evaluated on the 
irreducible representation O(N)(I, 0) contained within U(N) [ p ,  01. The corresponding 
tensors are completely symmetrical. The associated standard trace is represented 
graphically in figure 2 (compare figure l), where shaded portions represent contractions, 
and 

n,  = I ,  

n2 = 2n; = p - I .  

t--.,&., = z.;------C 
Figure 2. Standard trace for symmetry type { p ,  0). 
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From equation (44). 

(aa )  = gija',aj,gk' = Pi(;) + g""'(:;.)gij, 

s""'G;k, = (XX) = ~ ~ 1 ~ 1 ~ + ~ ~ 2 ~ 2 ~ + ~ ~ 1 ~ , ) ~  

(aa)  = (a)+(XX); 

(45) 

the terms in equation (45) indicating restrictions of the index summation. I t  suffices to 
write down 

(X,X,)[X,X,l = 2a"'"'[I~], 

(X X 2)  [x x2i i,] = 2g""' [ Ix21i2] + 2g"' i~ [ Ix, i I] + 2gXzil [x Ili,] + 2gXzi2[x , li I], (46) 

where the repeated index stands for contraction with the covariant metric tensor, 
[ [ I ]  = [ij]gi,. Hence 

(X,Xl)[XlX21 -+ 0, (XlXl)  -+ 0 (equation (38b)) ; 

(X2X2)[ili2] -+ 2N[II](n; = l), (X2X2)[ili2i3i4] -+ (4N+8)[IImm](n; = 7). 

(X2X2) -+ nz(n2 + N - 2) (equation (37a)) ; 

(XlX2)[xlx2ili2] -+ 8[xlx211](nl = 2, n; = l), 

(XlX,) + 2t11n2 (equation (37~)) ;  (47) 

where + indicates the result after applying the standard trace. and equations (37) and 
(38). Adding, using (a) = p ,  

(XX) = n: + 2n1n, + ( N  - 2)n, 3 

(aa)  = p(p+N-l)-I(I+N-2),  (48) 

Similar combinatorial techniques can be used to evaluate the cubic O(N) invariant 

(49) 

in agreement with equation (39). 

+(aaa + aaa) of 0 3 : 

g a a a  +&IC) = oo +(q + + N - 2)(azi) + ( p  -q  + l)ol + ( p  -t q - 2)02 + 0 3 ,  

@o = ( P - q ) ( P +  1 ) + 8 P + 4 ) 2 >  
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using the parameters of equation (22). Details of all the above calculations are given 
by Jarvis (1974). 

Absorbing the shift-operator independent term on the left-hand side, equations (49) 
and (50) can be written 

0 = A't+(p,  q ; I : I ,  m)+A-t - (p ,  q ; ;I; I ,  m), (51) 

(52) 

(53) 

5' = 2 ( p  + q - 21 - i- m ) ( p  - 21 - m ) ( p  - 21 - m - l),  

i = &I- 2E. - I)(q- 21-m)(p- 21 - I -  2m- N +4). I_ 

By commuting equation (51) with A, and using [A, A '1 = k A', 

[A, @I = A + t + ( p ,  q ;  1; I ,  m)--A-t-(p, q ;  1; I ,  m), 

and by combining equations (51) and (53), 

4 A f A - ( + 5 -  +([A,@]+@)([A,@]-@) = 0. (54) 
However, from equations (24) and (52), the factor 5 ' 5 -  vanishes for extreme values of 2. 
I t  follows that equation (54) may be replaced by 

45+5 - (P ,  Q ; A ; L, M )  + ([A, @] + @)([A, @] - @) = 0. ( 5 5 )  

A similar procedure could be carried out if, rather than equation (53), there were a 
second independent equation of the same form, such as would be afforded by the 
evaluation of the independent quartic O(N) invariant f (auaa+ ZaEa) of 9 3 (compare 
Green and Bracken 1973), leading to an equation similar to equation (55). 

Equation (55) provides the desired implicit operational definition 

B(A,@;P .Q;L ,M)  = 0, ( 5 6 )  

of A in terms of known labelling operators and invariants, where B is a polynomial. 
I t  should be pointed out, however, that since a definite choice of normalization of the 
abstract basis has not been imposed, the A in the definition should possibly be accom- 
panied by a further factor polynomial in the labels. This could also be accomplished 
by a subsequent redefinition of the un-normalized A. 
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